Quantitative Analysis
Parallel Processing
Numerical Analysis
C++ Multithreading
Python for Excel
Python Utilities
Services
Author
Printable PDF file
I. Basic math.
II. Pricing and Hedging.
III. Explicit techniques.
IV. Data Analysis.
V. Implementation tools.
VI. Basic Math II.
1. Real Variable.
A. Operations on sets and logical statements.
B. Fundamental inequalities.
C. Function spaces.
D. Measure theory.
E. Various types of convergence.
F. Signed measures. Absolutely continuous and singular measures. Radon-Nikodym theorem.
G. Lebesgue differentiation theorem.
H. Fubini theorem.
I. Arzela-Ascoli compactness theorem.
J. Partial ordering and maximal principle.
K. Taylor decomposition.
2. Laws of large numbers.
3. Characteristic function.
4. Central limit theorem (CLT) II.
5. Random walk.
6. Conditional probability II.
7. Martingales and stopping times.
8. Markov process.
9. Levy process.
10. Weak derivative. Fundamental solution. Calculus of distributions.
11. Functional Analysis.
12. Fourier analysis.
13. Sobolev spaces.
14. Elliptic PDE.
15. Parabolic PDE.
VII. Implementation tools II.
VIII. Bibliography
Notation. Index. Contents.

Arzela-Ascoli compactness theorem.


efinition

(Uniformly equicontinuous sequence) The sequence of functions MATH is "uniformly equicontinuous" if MATH

Proposition

(Arzela-Ascoli compactness criterion). Suppose the sequence of functions MATH is uniformly bounded: MATH and uniformly equicontinuous then there exists a subsequence MATH and a continuous function $f$ such that $f_{k_{j}}$ converges to $f$ uniformly on every compact subset of $\QTR{cal}{R}^{n}$ .





Notation. Index. Contents.


















Copyright 2007