Quantitative Analysis
Parallel Processing
Numerical Analysis
C++ Multithreading
Python for Excel
Python Utilities
Services
Author
Printable PDF file
I. Basic math.
II. Pricing and Hedging.
III. Explicit techniques.
IV. Data Analysis.
V. Implementation tools.
VI. Basic Math II.
1. Real Variable.
2. Laws of large numbers.
3. Characteristic function.
4. Central limit theorem (CLT) II.
5. Random walk.
6. Conditional probability II.
7. Martingales and stopping times.
8. Markov process.
9. Levy process.
10. Weak derivative. Fundamental solution. Calculus of distributions.
11. Functional Analysis.
12. Fourier analysis.
13. Sobolev spaces.
14. Elliptic PDE.
A. Energy estimates for bilinear form B.
B. Existence of weak solutions for elliptic Dirichlet problem.
C. Elliptic regularity.
D. Maximum principles.
E. Eigenfunctions of symmetric elliptic operator.
F. Green formulas.
15. Parabolic PDE.
VII. Implementation tools II.
VIII. Bibliography
Notation. Index. Contents.

Maximum principles.


roposition

(Weak maximal principle 1) Assume MATH and the coefficient $c$ of the operator $L$ is identically equal to 0 on $U$ . Then

1. If $Lu\leq0$ in $U$ then MATH

2. If $Lu\geq0$ in $U$ then MATH .





Notation. Index. Contents.


















Copyright 2007