Quantitative Analysis
Parallel Processing
Numerical Analysis
C++ Multithreading
Python for Excel
Python Utilities
Services
Author
Printable PDF file
I. Basic math.
II. Pricing and Hedging.
III. Explicit techniques.
IV. Data Analysis.
V. Implementation tools.
VI. Basic Math II.
VII. Implementation tools II.
1. Calculational Linear Algebra.
2. Wavelet Analysis.
A. Elementary definitions of wavelet analysis.
B. Haar functions.
C. Multiresolution analysis.
a. Scaling equation.
b. Support of scaling function.
c. Piecewise linear MRA, part 1.
d. Orthonormal system of translates.
e. Approximation by system of translates.
f. Orthogonalization of system of translates.
g. Piecewise linear MRA, part 2.
h. Construction of MRA summary.
D. Orthonormal wavelet bases.
E. Discrete wavelet transform.
F. Construction of MRA from scaling filter or auxiliary function.
G. Consequences and conditions for vanishing moments of wavelets.
H. Existence of smooth compactly supported wavelets. Daubechies polynomials.
I. Semi-orthogonal wavelet bases.
J. Construction of (G)MRA and wavelets on an interval.
3. Finite element method.
4. Construction of approximation spaces.
5. Time discretization.
6. Variational inequalities.
VIII. Bibliography
Notation. Index. Contents.

Support of scaling function.


roposition

(Support of scaling function) Suppose the equation MATH holds for a finite scaling filter MATH . Set MATH Then MATH In particular, if (length of spt $\phi$ ) $=N$ then MATH .

Proof

According to the formula ( Property of scale and transport 1 ), MATH Then MATH and, by $\left( \#\right) $ , MATH We conclude MATH





Notation. Index. Contents.


















Copyright 2007