Quantitative Analysis
Parallel Processing
Numerical Analysis
C++ Multithreading
Python for Excel
Python Utilities
Services
Author
Printable PDF file
I. Basic math.
II. Pricing and Hedging.
III. Explicit techniques.
IV. Data Analysis.
V. Implementation tools.
1. Finite differences.
2. Gauss-Hermite Integration.
3. Asymptotic expansions.
4. Monte-Carlo.
A. Generation of random samples.
a. Uniform [0,1] random variable.
b. Inverting cumulative distribution.
c. Accept/reject procedure.
d. Normal distribution. Box-Muller procedure.
e. Gibbs sampler.
B. Acceleration of convergence.
C. Longstaff-Schwartz technique.
D. Calculation of sensitivities.
5. Convex Analysis.
VI. Basic Math II.
VII. Implementation tools II.
VIII. Bibliography
Notation. Index. Contents.

Uniform [0,1] random variable.


verywhere in this chapter the $\eta$ denotes a random variable uniformly distributed on the interval $\left[ 0,1\right] $ : MATH MATH A code for generation of such a variable is provided in [Boost] .





Notation. Index. Contents.


















Copyright 2007