Quantitative Analysis
Parallel Processing
Numerical Analysis
C++ Multithreading
Python for Excel
Python Utilities
Services
Author
Printable PDF file
I. Basic math.
II. Pricing and Hedging.
III. Explicit techniques.
IV. Data Analysis.
V. Implementation tools.
VI. Basic Math II.
VII. Implementation tools II.
1. Calculational Linear Algebra.
2. Wavelet Analysis.
3. Finite element method.
4. Construction of approximation spaces.
5. Time discretization.
6. Variational inequalities.
A. Stationary variational inequalities.
a. Weak and strong formulations for stationary variational inequality problem.
b. Existence and uniqueness for coercive stationary problem.
c. Penalized stationary problem.
d. Proof of existence for stationary problem.
e. Estimate of penalization error for stationary problem.
f. Monotonicity of solution of stationary problem.
g. Existence and uniqueness for non-coercive stationary problem.
B. Evolutionary variational inequalities.
VIII. Bibliography
Notation. Index. Contents.

Stationary variational inequalities.


n the context of the section ( Optimal stopping time problem ) we consider the state process MATH The functions $\psi,f$ are independent of time and $g,h=0$ . It follows from the considerations of the sections ( Representation of solution for elliptic PDE using stochastic process ) and ( Optimal stopping time problem ) that the PDE of the problem is of the elliptic type.




a. Weak and strong formulations for stationary variational inequality problem.
b. Existence and uniqueness for coercive stationary problem.
c. Penalized stationary problem.
d. Proof of existence for stationary problem.
e. Estimate of penalization error for stationary problem.
f. Monotonicity of solution of stationary problem.
g. Existence and uniqueness for non-coercive stationary problem.

Notation. Index. Contents.


















Copyright 2007